Thursday, April 1, 2021

The violation of 'local realism' and Zeilinger's experiment emulated by classical means

Abstract

It is generally accepted that the violation of 'local realism' is a distinctive feature of quantum systems, and it cannot be modeled by classical means. Our pilot study shows that this is actually possible. When analyzing the emulation of well-known 'quantum paradoxes', it turns out that the key role in their occurrence is played by the operation of the coincidence counter, which differently distinguishes a subset of entangled pairs from the set of all registrations. Its operation leads to the illusion of instantaneous 'spooky action' and 'retroactive eraser', when changing the system setting changes the settings of statistical sampling from data collected in the past. In the light of new thought experiments, the 'collapse' of the wave function can be interpreted in a subjective manner, as a change in the practical attitude of the experimenter's mind, which does not contradict however the objective nature of reality. In this case, the wave function is only a way of describing statistical 'ensembles' in the Blokhintsev's sense. The presence of non-classical interference between distant macroscopic cyclic processes should lead to non-local effects in animate and inanimate nature and in the human brain.